Metabolic Syndrome: Fact or Fiction

BY: DEBRA COLLIER, MPH and APRIL CLARK, Dr PH

Metabolic syndrome is a highly debated condition which has been defined to serve as a predictor for cardiovascular disease (CVD) and type 2 diabetes. Persons with metabolic syndrome may be 9 to 30 times more likely to be diagnosed with type 2 diabetes and 2 to 4 times more likely to develop CVD [1]. Although research studies have proven links between the conditions that comprise metabolic syndrome and risk for CVD and type 2 diabetes, some skeptics argue this syndrome does not really exist [2,3].

The American Diabetes Association has raised questions of the validity of metabolic syndrome because the underlying cause is not known. Despite these concerns, in 2006, the International Diabetes Federation (IDF) issued a worldwide definition of metabolic syndrome that includes different measures based on ethnicity, which was where previous definitions fell short [2]. For the criteria for metabolic syndrome, refer to Table 1.

Ford et al. published findings from the first prevalence study to estimate metabolic syndrome in the adult population [4]. The criteria used to identify metabolic syndrome was issued by the National Cholesterol Education Program Adult Treatment Panel (ATP III). These criteria are similar to the criteria issued by IDF, but do not take into account waist circumference measurements for different ethnic groups. Ford et al. found that the age-adjusted rate for metabolic syndrome was 24% in adults 20 years old or older. Similarly, the National Heart, Lung, and Blood Institute reports nearly 25% of adults in the U.S. have metabolic syndrome. Almost 45% of adults in the Ford

Table 1: IDF Criteria for Metabolic Syndrome

<table>
<thead>
<tr>
<th>Condition</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central obesity</td>
<td>waist circumference with ethnicity specificity*</td>
</tr>
<tr>
<td>Plus two or more of the following criteria:</td>
<td></td>
</tr>
<tr>
<td>Raised triglycerides</td>
<td>≥ 150 mg/dL (1.7 mmol/L) or specific treatment for this lipid abnormality</td>
</tr>
<tr>
<td>Reduced HDL cholesterol</td>
<td>< 40 mg/dL (1.03 mmol/L) in males < 50 mg/dL (1.29 mmol/L) in females or specific treatment for this lipid abnormality</td>
</tr>
<tr>
<td>Raised blood pressure</td>
<td>systolic BP ≥130 or diastolic BP ≥ 85 mm Hg or treatment of previously diagnosed hypertension</td>
</tr>
<tr>
<td>Raised fasting plasma glucose</td>
<td>≥ 100 mg/dL (5.6 mmol/L), or previously diagnosed type 2 diabetes or previously diagnosed type 2 diabetes recommended but is not necessary to define presence of the syndrome</td>
</tr>
</tbody>
</table>

*Europeans- Men ≥94 cm, Women ≥80 cm; South Asians- Men ≥90 cm, Women ≥80 cm; Chinese- Men ≥90 cm, Women ≥80 cm; Japanese Men ≥85 cm, Women, ≥90 cm; Sub-Saharan Africans- more data needed.
Multiple Pair-Wise Comparisons

BY: CHARLES G. MINARD, PhD

Many studies seek to test multiple hypotheses about a population from a single sample. For instance, approximately 19,000 genes in human liver cells were screened in a study by Clement et al. [1] to identify genes that were over- or under-expressed in a simulated microgravity environment. The level of expression of each gene was quantified through microarray analysis, and a t-test was performed for each gene. This presents some interesting statistical issues, particularly with respect to genomic studies.

Researchers often assume an \(\alpha = 0.05 \) level of significance for each hypothesis test. This value is often selected because everyone else does, and it has become synonymous with statistical significance. The selection of 0.05 has roots that lie with a publication by R.A. Fisher[2] in which he stated that

If the difference is many times greater than the standard error, it is certainly significant, and it is a convenient convention to take twice the standard error as the limit of significance; this is roughly equivalent to the corresponding limit \(P=0.05 \). . . (Fisher 1925)

However, the level of significance should be more thoughtfully measured in practice. Consider a more simplistic situation than Clement et al. in which the expression of only two genes is studied. Assuming an \(\alpha = 0.05 \) level of significance, then the probability of getting a false positive result is

\[
Pr (\text{Type-1 error}) = Pr (\text{Type-1 error gene 1}) + Pr (\text{Type-1 error gene 2}) - Pr (\text{Type-1 error gene 1 & 2})
\]

\[
= 0.05 + 0.05 - 0.05^2 = 0.0975
\]

The overall Type-1 error rate is 0.0975 (not 0.05), and the researcher is more likely to obtain a false positive result. The comparison-wise Type-1 error rate for each gene is 0.05; however, the experiment-wise Type-1 error rate is inflated. The researcher will be more likely to obtain a statistically significant result as the number of pair-wise comparisons increases if the level of significance is not controlled.

The Bonferroni correction is a simple method that may be used to appropriately adjust the level of significance value. If \(N \) pair-wise comparisons are to be made assuming an experiment-wise level of significance \(\alpha_e \), then

\[
\alpha_e = \frac{\alpha}{N}
\]

gives the comparison-wise level of significance \(\alpha_e \) for each hypothesis test. In our example with two genes

\[
\alpha_e = \frac{0.05}{2} = 0.025
\]

and only p-values less than or equal to 0.025 would be declared statistically significant.

Controlling the Type-1 error rate for multiple pair-wise comparisons is important to appropriately analyze research results. The Bonferroni correction is a simple method for controlling the error rate and it is easily implemented. Other, more sophisticated techniques include the Tukey, Newman-Keuls, Dunnett, Scheffé, and nonparametric procedures.

For your information

If you have a new address or phone number, please let us know by calling (281) 244-5195 or (281) 483-7999. You may also write us at:

mary.L.wear@nasa.gov

...and ours

Longitudinal Study of Astronaut Health Flight Medicine Clinic/SD38
Johnson Space Center/NASA
2101 NASA Parkway
Houston, Texas 77058-3696
or e-mail us at:
mary.L.wear@nasa.gov

References:
The example by Clement et al., however, provides a somewhat extreme example of multiple pair-wise testing. The Bonferroni correction would require an \(\alpha = 0.0000026 \) level of significance for each gene assuming 19,000 genes were tested. Genetic studies often use other methods for controlling the Type-1 error rate such as false discovery rate (FDR) control [4]. Clement et al. controlled the Type-1 error rate by letting \(\alpha = 0.01 \) and imposing minimum restrictions on the magnitude of gene regulation.

Chronic Diseases Surveillance: What is it and who conducts it?

BY: MELISSA HALM, MPH

Chronic diseases began to replace infectious diseases as the most common causes of death in the early 20th century. This substantial decrease in infectious disease mortality was attributed to the development of better sanitation practices, advancements in medicine and health care, and life style changes. In 2005, the Centers for Disease Control and Prevention (CDC) reported that the 3 leading causes of mortality in the United States were attributed to chronic diseases [1]. These 3 causes of death included diseases of the heart, cancer, and cerebrovascular diseases [1]. With the reality of this growing health problem, health departments have begun to focus more resources into chronic disease surveillance.

Health departments typically conduct disease surveillance activities through local, state, and federal mandates that require health care and laboratory personnel to report specific conditions to the local health authority within a specific time period. These mandates were developed to prevent the spread of communicable diseases and health-related threats in the community. In the state of Texas, 76 conditions are reportable to the local health authority [2]. These conditions include infectious diseases, environmental exposures, work-related exposures, traumatic injuries, and one chronic disease. Cancer is the only chronic disease reportable under the current notifiable conditions list [2]. Most of the reportable conditions are infectious diseases.

Health department surveillance systems are well equipped for infectious disease surveillance, but how about chronic disease surveillance? Currently, chronic disease surveillance activities are performed primarily by state and federal health departments. Few local health departments have the resources to extend their disease surveillance activities to chronic diseases. State and federal health departments use different surveillance techniques to collect information about patients with chronic disease. Common chronic disease data collection techniques include disease registries, hospital discharge data, mortality surveillance, randomized population-based telephone interviews questioning citizens on a myriad of health related issues, and youth behavioral surveys [3,4].

Health department surveillance systems are well equipped for infectious disease surveillance, but how about chronic disease surveillance? How about chronic disease surveillance?

References:

Disease Registries [3, 4]: Disease registries gather patient information for specific diseases or disease groups, like cancer. These registries contain basic demographic, diagnosis, and treatment information for patients. The registries are useful tools for determining the incidence and prevalence rates of diseases. For more information regarding incidence and prevalence rates, refer to Table 2.

Hospital Discharge Data [3, 4]: State-licensed hospitals provide patient discharge information to the state health departments. The state health departments specify the patient information required to be reported. Like disease registries, the patient information reported to the state health department is limited to basic demographic data, diagnosis, and treatment information.

Mortality Surveillance [3, 4]: Local health departments are responsible for collecting the death records for their jurisdictions and subsequently forwarding the death records to the state health department. The local health departments use state standardized death record forms. These forms contain demographic information, birth and death information, cause(s) of death, and underlying conditions.

Behavioral Risk Factor Surveillance System [3, 4]: BRFSS is an ongoing randomized population-based telephone survey that collects nationally standardized information on numerous health-related issues. Participants must be 18 years of age or older. Health-related issues collected in this survey include behaviors, chronic and infectious diseases, and injuries. BRFSS provides state health departments with the ability to collect and analyze their own data, as well as compare their results to other states and national results. BRFSS also acts as a repository for data. Local health departments and research institutions can request de-identified data for their own analytical needs.

Youth Risk Behavior Surveillance System (YRBSS) [3, 4]: YRBSS is a school based survey, similar to BRFSS, that focuses on high school students. Surveys collect information on participant’s behaviors and injuries.

References:

Table 2: Incidence and Prevalence Rates

<table>
<thead>
<tr>
<th>Incidence rate</th>
<th>Number of new cases of a disease / Number of individuals in the at risk population / X Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevalence rate</td>
<td>Number of old and new cases of a disease / Number of individuals in the at risk population / X Time</td>
</tr>
</tbody>
</table>