Vitamin D Deficiency
BY: ADRIANA BABIAK-VAZQUEZ, MA, MPH

ately, much has been reported and written about vitamin D deficiency and its possible association with numerous diseases. Vitamin D is essential for a number of biological processes in humans, like calcium absorption; bone mineralization; reduction of inflammatory responses; and the regulation of neuromuscular functions, immune functions, and the cell life cycle [1]. Recent studies have linked vitamin D deficiency with increased risk for heart, liver, and lung diseases, diabetes, fibromyalgia, Alzheimer’s, and various cancers and their propensity to metastasize [1].

Vitamin D is acquired from sunlight exposure, which triggers synthesis, through consumption of fortified foods (i.e. milk and other dairy products), vitamin supplements and foods rich in vitamin D (i.e. salmon, mackerel, tuna). Since the vitamin is biologically inert, activation must take place in the body through hydroxylation in the liver to 25-hydroxyvitamin D \([25(OH)D]\) or calcidiol and through hydroxylation in the kidney to 1,25-dihydroxyvitamin D \([1,25(OH)_2D]\) or calcitriol [1].

Vitamin D deficiency does not seem to be concentrated solely in the malnourished and those living far from the equator, whose exposure to sunlight may be limited. Scientists and physicians have documented vitamin D deficiency in populations living in India [2], Australia [3,4] and others close to the equator, where sunlight is found much of the year [5].

Furthermore, recent studies have indicated the daily recommended levels of vitamin D consumption are not sufficient. Even in groups, such as pregnant and lactating women receiving prenatal care, consuming 2-3 glasses of milk and 400 international units (IU) of vitamin D daily, decreased levels of vitamin D have been identified [2].

Equipped with a new instrument, the DiaSorin LiaISON®, the same analyzer used for measurement of vitamin D levels in major reference medical laboratories across the country, Kathleen A. McMonigal, M.D., Director of the Clinical Laboratories, has been measuring vitamin D levels in the NASA community. During a brief interview, Dr. McMonigal discussed what she was encountering: “I was somewhat surprised with the results. We started measuring vitamin D levels in active and retired astronauts and Occupational
The New Direction of Your Health Records

By: JOCELYN MURRAY, MPH

The new direction of health records in the United States lies within the Nationwide Health Information Network (NHIN). The program was established in 2004 under the direction of the Office of the National Coordinator for Health Information Technology (ONC) in an effort to provide a foundation for meaningful data communication among healthcare providers, medical support personnel, and consumers, regardless of the distance between participating parties [1]. The NHIN is an “interoperable information technology (IT) environment that brings together personal health records, electronic health records (EHRs), population health information, standards (data, technical, and security), and an interoperable health information exchange network [2]”.

The goal of NHIN is to improve the quality and efficiency of healthcare by establishing a secure, national, electronic, healthcare information exchange network by 2014 [1]. The NHIN will achieve its goals by developing the standards and infrastructure for a secure, nationwide data exchange, improving the coordination of medical care information among providers of all types, ensuring the availability, confidentiality, and security of health information, reducing both healthcare risks and costs that result from medical errors, inefficiencies, incomplete patient information, and improper medical support [1]. In addition, consumers will be able to access and manage their personal health records via EHRs [1]. Furthermore, consumers reserve the right to not allow their medical data to be exchanged within the network.

Twenty-four public and private entities (e.g., Centers for Disease Control and Prevention, Kaiser Permanente, and the Department of Defense) are currently participating in the NHIN Cooperative. Participants agree to support a set of NHIN Core Services that ensure private and reliable internet-based communication with other participants. Table 1 provides a brief summary of the initial Core Services. As of February 2009, the Social Security Administration and MedVirginia have successfully shared live data by means of the NHIN. Additional testing between NHIN pilot partners and refinement of the Core Services will continue throughout 2009. Governance and future expansion of the NHIN will remain the responsibility of the ONC; however, the network should ultimately be a self-sufficient public-private partnership that is managed in the private sector.

References:
www.hhs.gov/healthit


Table 1. NHIN Core Services [1]

<table>
<thead>
<tr>
<th>Services</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messaging Platform</td>
<td>The essential protocols required for message transport</td>
</tr>
<tr>
<td>Authorization Framework</td>
<td>Provides the essential protocols for authorization of exchange of health information</td>
</tr>
<tr>
<td>Subject Discovery</td>
<td>Ability to search for an individual and determine if they are known within a NHIN participant's network</td>
</tr>
<tr>
<td>Query for Documents</td>
<td>Ability to search for a document (health information) for a specific individual</td>
</tr>
<tr>
<td>Retrieve Documents</td>
<td>Ability to retrieve or transport a document for an individual from another NHIN participant</td>
</tr>
<tr>
<td>Audit Log Query Service</td>
<td>Ability to request and retrieve an audit log of requests and access to health information</td>
</tr>
<tr>
<td>Consumer Preferences</td>
<td>Ability to exchange consumer-defined preferences in association with the exchange of patient health information</td>
</tr>
<tr>
<td>Health Information Event</td>
<td>Ability to keep updated on changes to specific health information for an individual through a “publish and subscribe” model</td>
</tr>
<tr>
<td>Messaging Service</td>
<td>Common network registry that allows the discovery of other NHIN participants and the services they offer. Nationwide Health Information Exchange (NHIE)</td>
</tr>
<tr>
<td>NHIE Service Registry Service</td>
<td>Authorized Case Follow up. Re-identification and follow up of anonymous cases identified during BioSurveillance, public health reporting and quality reporting</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For your information
If you want a copy of your exam results, please complete and sign a release form while you are visiting the Clinic for your examination. The form is called Privacy Act Disclosure Authorization and Accounting Request (DAAR), or NASA Form 1536.

...and ours
Longitudinal Study of Astronaut Health Flight Medicine Clinic/SD38 Johnson Space Center/NASA 2101 NASA Parkway Houston, Texas 77058-3965 or e-mail us at: jsc-health@mail.nasa.gov

www.nasa.gov
Pancreatic Cancer - A Silent Killer

BY: MELISSA HALM, MPH

Pancreatic cancer has posed problems for the medical community. Over the last 25 years, the mortality rate for pancreatic cancer has remained constant, at approximately 11 deaths per 100,000 population [2, 4]. Although pancreatic cancer accounts for only 2% of the new cancer diagnoses in a year, it is “the 4th leading cause of cancer death in the United States.” [1, 2].

The high mortality rate is partly due to the difficulty in diagnosing pancreatic cancer. Pancreatic cancer is typically found after the cancer has already metastasized to other organs [1, 2]. Once the cancer has started to metastasize outside the pancreas, treatment becomes more difficult and less successful. The difficulty in diagnosing pancreatic cancer arises due to three facts [1]:

- Pancreatic tumors are virtually undetectable during routine physical examinations due to the location behind the stomach.
- A blood screening test is currently not available to test for pancreatic cancer.
- Symptoms are generic and typically do not present until metastasis has occurred.

Symptoms associated with pancreatic cancer are non-specific. The symptoms include radiating abdominal pain, jaundice, loss of appetite, depression, and weight loss [3]. Individuals with more common conditions and diseases, like hepatitis or other infectious processes, experience similar symptoms. The process of ruling out the other more common conditions could further delay diagnosis and appropriate treatment of pancreatic cancer.

The diagnosis of pancreatic cancer requires extensive testing, usually including high-resolution imagery, such as computerized tomography (CT) scan and magnetic resonance imaging (MRI); endoscopic procedures, such as endoscopic retrograde cholangiopancreas-tocytography (ERCP) and endoscopic ultrasound (EUS); and biopsies. These procedures are also used to determine the stage of the cancer. The stage of cancer is determined by the extent of metastasis. The stages range from IA to IV, where the cancer cells in stage IV have metastasized passed the surrounding lymph nodes to other organs [1, 3]. Pancreatic cancer requires aggressive treatment, including surgery, radiation therapy, and chemotherapy. The Whipple procedure removes the head of the pancreas, gall-bladder, and portions of the small intestines, bile ducts, and area lymph nodes [1, 3]. Distal pancreatectomy removes part of the body and tail of the pancreas, as well as the spleen [3]. Both procedures should be performed by experienced surgeons due to the risk of the surgery [3].

While the cause of pancreatic cancer is still an enigma, there are a number of known risk factors of pancreatic cancer. The risk factors include increasing age; male gender; African American; smoker; obesity; consuming a high-fat diet; diabetes; chronic pancreatitis; liver cirrhosis; exposure to certain pesticides, dyes, and chemicals; family history of pancreatic cancer; genetic mutations; exposure to Helicobacter pylori; and an increased amount of stomach acid [1, 3, 4]. The risk of developing pancreatic cancer in men is only slightly higher than in women [1]. The risk for pancreatic cancer in African Americans is 50% greater than in Whites [4]. The reason for this increased risk in unknown [4]. Individuals who smoke are twice as likely to develop pancreatic cancer compared to individuals who do not smoke [4]. A number of the noted risk factors, like smoking, obesity, dietary habits, can be changed to help decrease the risk of developing pancreatic cancer.

The relative survival of individuals with pancreatic cancer increases the earlier the cancer is diagnosed and treated. Figure 1, located on page 5, depicts the 5-year relative survival of individuals with pancreatic cancer. Relative survival is the ratio of the proportion of pancreatic cancer survivors to the proportion of expected survivors in a pancreatic cancer-free population over a 5-year period. As the stage of cancer increases, the 5-year relative survival dramatically decreases.

Historically, pancreatic cancer research funding has been very limited. However, between 2000 and 2006, the funding for pancreatic cancer research increased nearly fourfold. Researchers are now looking at many potential causes of pancreatic cancer in order to determine how the cancer occurs.

References: